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Abstract  

Many financial advisors claim that volatility inherently drags down the value of unleveraged 

portfolios.  Using historical data, this article disproves the assertion that the difference between 

arithmetic returns and geometric returns of a price series quantifies volatility drag. It also 

disproves the claim that volatility drag occurs because recovering from a price drawdown 

requires a higher percentage move up than down. Characteristics of securities with volatility drag 

are shown to be inconsistent with economics-based pricing and the Black & Scholes option 

pricing model. Changes in investment strategies resulting from the invalidation of volatility drag 

as a loss mechanism are discussed. 
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Volatility drag, sometimes called variance drain or a volatility tax, is an effect that is almost 

universally accepted in the world of finance. Simply stated, it predicts that volatility, the noisy up 

and down moves of a security, inevitably results in a loss of value. The predicted drag increases 

rapidly with increased volatility, so investors are advised to minimize it whenever possible. Not 

surprisingly, “low volatility” products have been developed to take advantage of this effect. 

They’ve been very successful, gathering over $40 billion in assets.    

However, the case for volatility drag rests on shaky foundations. In his book “The Black Swan,” 

Nassim Talab proposes a class of reasoning errors he calls “ludic fallacies” that err by “basing 

studies of chance on the narrow world of games and dice.” It’s likely one of the key points used 

to assert the existence of volatility drag in securities markets suffers from such an underlying 

ludic fallacy.  

As might be expected, the difficulties with volatility drag are subtle. The following illustration 

identifies two of the key problems associated with the model typically used to demonstrate the 

existence of volatility drag in securities.   

 

An Illustration: A Volatile Bank Account 

A bank wants to liven up its product offerings. Instead of free prizes, the bank offers a “coin 

toss” account where your account, in addition to receiving its regular, compounded daily interest 

rate, also participates in a daily event where your account is boosted or reduced by 0.1%, based 

on a coin flip by a randomly selected customer in the lobby. If the coin lands “heads” then “coin 

toss” accounts gain a tenth of a percent, and if it lands “tails” your balance is reduced by a tenth 

of a percent. Assuming a fair coin, the cumulative number of heads vs. tails will be 

approximately equal over the long run.  

The bank states that customers that hold the account over the long term should receive 

essentially the regular interest rate return, and the bank verified that the long-term arithmetic 

average of returns (often called the expected value) of these accounts would match the 

compounded value of the regular daily rate.  

Of course, if there’s a run of “heads” the customers’ balances might be considerably ahead of the 

standard interest rate pace. The bank offers a free transfer of your balance to a regular saving 

account with no penalties if the customer wishes to “cash out.”  The bank’s marketing 

department expects that the excitement generated by the coin flip accounts will generate an 

influx of customers that will more than compensate for any losses from winning customers 

transferring out.  

 



 

But, the Game is Rigged! 

A customer evaluates the mechanics of the process and complains that the bank has an edge with 

the coin toss accounts. The process that the bank is using is rigged: over time the customers will 

almost always end up with an effective interest rate lower than the regular interest rate.  

The customer’s analysis, first ignoring the regular compounded interest, shows that the account 

has a “heads I win, tails you lose” characteristic.  

• If the sequence of tosses results in heads followed by tails (HT) the result will be 

1.001*0.999 = 0.9999990 

• If the sequence of tosses is tails followed by heads (TH) the result is 0.999*1.001 which 

also equals 0.9999990.  

In both cases, the customer is slightly behind. Including the regular interest doesn’t help; the 

customer is still slightly behind the regular interest rate in both the HT & TH cases. Of course, 

many other sequences of heads and tails are possible, but a Monte Carlo simulation shows that in 

the general case the average loss per toss is consistent.  

 

Fixing The Problem 

Embarrassed, the bank agrees to change the process such that neither the customer nor the bank 

will have an edge. Assuming a fair coin, what value should be associated with heads, and what 

value with tails to make this a “lossless” process?  Amita in the bank’s actuarial department 

comes up with an answer. A suitable value for the head side is 1.001 and for the tail side, its 

reciprocal, approximately 0.999000999001. With this approach, the multiplications for the heads 

and tails cancel each other out over time, making the process volatility neutral. On average the 

account will compound at the daily interest rate.  

While Amita was working on this problem, she discovered another solution. Instead of changing 

the head and tail values, the problem can be addressed by boosting the effective daily interest 

rate by the variance divided by two, which in this case is 
0.0012

2
. With this approach, the losses 

due to the coin toss process are precisely compensated for by boosting the effective interest rate. 

Amita considers this solution a hack because it doesn’t address the core issue—the 

fundamentally lossy process associated with the coin toss. An analogy would be having a home 

furnace thermostat consistently turns off two degrees lower than it should and “fixing” the 

problem by telling everyone to set the thermostat two degrees higher. 

  

 

 



Lossy Processes and Lousy Metrics 

The bank story identifies two issues. One, the multiplication of symmetric percentage moves 

creates an inherently lossy process. The second is that a standard metric, the arithmetic 

mean/expected value when used with multiplicative processes over-promises. The expected 

value on the bank’s original process was the daily interest rate, suggesting a fair process, but in 

reality, the process favored the bank.  

Arithmetic means when calculated using data from multiplicative processes are order sensitive, 

unlike additive processes, e.g., determining the average height of a population, where the order 

of calculation doesn’t change the arithmetic mean. Consider two price sequences, where the final 

price is the same, but the order of the second and third prices are reversed.  

Sequence A: 100, 101, 104, 103, 100 

Sequence B: 100, 104, 101, 103, 100  

For multiplicative processes the formula for computing the arithmetic return when the 

probabilities for each period are the same is  
1

𝑁
∑

𝑃𝑖

𝑃𝑖−1
− 1𝑁

𝑖=1 , where N equals the number of 

periods and 𝑃𝑖 is the ith price.  

The arithmetic return for these sequences is path-dependent—the final result is always a function 

of the volatility of the intermediate sequence. For example, the arithmetic return of sequence A is 

lower than sequence B’s by almost a factor of two (~0.00240 vs ~0.00457). 

When used in a multiplicative domain the arithmetic average increases with the volatility of the 

sequence. Since there’s no such thing as negative volatility, the arithmetic return/expected value 

of a multiplicative process with non-zero volatility will always be higher than the geometric 

return, and the probability of the final return exceeding the expected value will always be lower 

than 0.5 probability (Grandville 1998; Hughson 2006).  

In multiplicative environments, the geometric return is the superior metric, being insensitive to 

the order and volatility of the data.   

 

In the Long Run the Expected Value is a Gamble, not a Forecast  

Over short periods of time the differences between expected and geometric returns are small, but 

over time the differences become dramatic. In the article “The volatility paradox: When winners 

lose and losers win,” the authors propose a thought experiment where a portfolio’s annual returns 

have an equal chance of being either plus 20%, or minus 18% (Collie 2017). The long-term 

arithmetic returns of this experiment will average 1% annually, but the realized returns average 

minus 0.8%. The author describe this discrepancy as a paradox, but it only appears to be a 



paradox because of their erroneous view that the arithmetic return/expected returns is a reliable 

forecast of future value rather than a volatility boosted metric. 

Figure 1 shows the result of a Monte Carlo simulation (2.4 million runs) of this experiment, 

going out a thousand years with the portfolio value starting at $100.   

  

 

The so-called expected value does increase at around the 1% rate but the probability of reaching 

or exceeding that value has dropped below 0.2% at the 1000-year mark. In contrast, the predicted 

geometric mean and median of the actual results are indistinguishable. The 1000-year example 

magnifies the effect but even for a 30-year horizon, the even-odds return is 58% lower than the 

expected return, more than enough shortfall to derail a retirement strategy.  

Figure 1 shows various statistical metrics but doesn’t illustrate the highly non-linear way that the 

prices themselves are distributed. The maximum and expected values become noisy in the longer 

time frames because there aren’t many data points to average in the high price ranges. Figure 2 

shows how the simulated portfolio values at the 1000-year point are distributed relative to each 

other.   



  

 

Over time this distribution, effectively the density of prices, becomes log-normally distributed, 

ranging over multiple orders of magnitude—something we don’t encounter often in our daily 

lives. In these situations, arithmetic averages lead us astray, a few prices are so high that they 

drag the average price well above the median price.  

An analogous situation would occur if you took a random sampling of annual income from five 

people and one of them happened to earn over a billion dollars a year.  Table 1 shows a possible 

result.  

Table 1 

Five Annual Incomes Average Income 

$65,000 $250,061,000 

$85,000  

$75,000 Median Income 

$1,500,000,000 $80,000 

$80,000  

 

The average income in table 1 is $250 million, but no one’s actual income is within a factor of 5 

of that number. When data is spread out over multiple decades the median, in this case, $80K, is 

a much better number for forecasting.  



 

 Volatility Drag and Real Markets 

Twenty-five years ago, Tom Messmore published a paper that analyzed the differences between 

arithmetic mean (AM) and geometric mean (GM) for multiplicative processes (Messmore 1995). 

He showed that the difference between these two metrics closely matches the variance divided 

by two. He then applied this AM-GM relationship to markets, where it is generally accepted that 

the multiplicative model is appropriate. This relationship requires that the AM and/or the GM 

vary with volatility, but it was not obvious which metric was affected.  

He proposed a thought experiment, essentially identical to the bank’s first proposal except with 

zero daily interest, modeling market moves as essentially a coin toss, with equal and opposite 

percentage face values. The arithmetic return of this experiment is zero and the geometric mean 

is less than zero. Messmore mistakenly assumed that the arithmetic return/expected value is a 

reliable, even-odds forecast of future value, so he interpreted the negative value of the geometric 

mean as proof that geometric returns are eroded by volatility.   

Messmore’s AM-GM relationship is 𝑅𝑎
 − 𝑅𝑔 

 ≈  
𝜎2

2
                                           (1) 

Where: 

• 𝑅𝑎
  = arithmetic mean return 

• 𝑅𝑔 = compound return or the discrete geometric mean return  

• 𝜎 = volatility, 𝜎2 is variance. 

Messmore claimed that the term on the right side of this equation, the variance divided by two, 

quantified “Variance Drain,” an effect that erodes economic returns.  Messmore’s variance drain 

concept was broadly accepted, and it is assumed in most financial analyses of securities markets. 

 

How Do Markets Work Anyway?  

Messmore modeled volatility in securities markets as having casino-style attributes, even-odds 

for symmetric percentage moves, which inherently has volatility drag.  Does that model 

realistically represent the real world or is it a ludic fallacy, based on an overly simplistic game?    

Securities markets are complex, ultimately human-driven processes, unconstrained by the laws 

of physics. Typically structured as double-sided auctions, market participants usually include 

buyers, sellers, market makers, and high-frequency traders. Arbitrageurs stand ready to profit 

from any actionable differences between related markets (e.g., SPX futures vs S&P 500 

Exchange-Traded Funds).  



Another model for markets is that they are estimators of value where the effects of noise-like 

volatility cancel out over time. The difficulty of estimating value varies tremendously, ranging 

from straightforward present value calculations (e.g., a USA Treasury note), to valuing a 

corporate start-up losing billions of dollars a year. An incredible amount of effort, fueled by fear 

and greed, goes into determining the “right” price for securities. 

A value-driven market would not be constrained by previous values or past volatility in 

determining what the best guesses are for the present value (exceptions being short term 

measures like futures limit up/down, trading halts, or regulated markets). Of course, historical 

patterns might be included via factors such as momentum, but historic information will likely be 

interpreted differently by the various market participants.  

All markets have volatility, but does volatility inherently erode prices? Or is volatility essentially 

noise, obscuring the signal (current value)—often annoying, sometimes scary, but ultimately not 

changing the signal? 

 

Characteristics of a Volatility Neutral Model  

Analytically, modeling a market that’s value-estimating and treats volatility as noise is 

straightforward. The reciprocal approach proposed by Amita in the bank example can be 

generalized with exponential compensation to the signal and noise which over time cancels out 

noise while preserving the signal.  

A characteristic of exponentially compensated volatility is that equally likely positive and 

negative moves have different absolute values. In contrast, coin flip style market models assume 

equally likely positive/negative percentage moves will have the same absolute value.  

It’s counterintuitive that volatility we encounter in the real world would have unequal 

percentages that cancel out, but it’s inherent in the mathematics of quantity and proportionality. 

An apple vendor that sells 4 apples out of their 20-apple inventory sees a 20% drop in their 

inventory. Buying four apples from their wholesaler to replace them results in an inventory 

increase, of 25%, from 16 to 20.  

 

A Quantitative Model of a Volatility Neutral Market  

Volatility-neutrality is an inherent aspect of Geometric Brownian Motion (GBM), a process that 

is generally agreed to be a good basic model for how securities markets work and a foundational 

assumption of the Black and Scholes model for option pricing (Sigman 2006). 

A discrete-time solution to the GBM stochastic differential equation says that for one time period 

to the next a market’s prices can be modeled by: 

𝑃𝑖
 =  𝑃𝑖−1

  𝑒𝑅𝑔𝑐 + 𝜎𝑐𝑧                                                                                    (Sundaram 2011, part 6) 



• 𝑃𝑖
    =   price at the end of period “i” 

• 𝑅𝑔𝑐 =  drift factor, continuously compounded geometric returns 

• 𝜎𝑐    =   standard deviation of log returns  

•  𝑧    =   a Wiener process, z ~ 𝜂(0,1) the standard normal distribution  

The exponential function in this equation has the effect of converting normally distributed 

volatility moves that are symmetric around the drift term into “log” versions of themselves. This 

exponentially compensated behavior has the same volatility-neutral characteristics as Amita’s 

preferred solution to the bank’s coin toss problem.    

Most attributes of this model are a good match with historic market characteristics: 

1) The long-term average volatility tends to be stable regardless of price 

2) Long term prices and returns are inherently log-normally distributed  

3) Prices have a low side limit, usually zero, that’s consistent with the limited liability attribute 

of stocks. However, the model can be adapted to allow bounded negative prices (e.g., futures 

contracts with required physical delivery).  

As with most models, this one does not capture all the nuances of the physical process being 

modeled.  For example, it significantly underestimates the probability of higher sigma events in 

markets. This weakness in the model could be improved upon by replacing the Gaussian 

distribution used to model volatility with a symmetric process with fatter tails such as the 

Laplace distribution.  

 

Arguments for Volatility Drag  

The arguments typically used to assert the presence of volatility drag in unleveraged securities 

are: 

1. A sequence of symmetric plus/minus percentage moves in a market creates an ongoing 

drag on prices 

2. The difference between the arithmetic mean and geometric mean in a price history 

quantifies volatility drag (Spitznagel 2018)  

3. It’s harder for markets to recover back to previous levels because the percentage gain 

required to recover is larger than the percentage loss (e.g., a 20% drawdown requires a 

25% recovery to regain the pre-drawdown price). 

The first argument is an assumption, based on intuition, that may or may not be how markets 

work.  Any “proof” of volatility drag that assumes an inherently lossy underlying process proves 

nothing more than the model itself is lossy; it proves nothing about markets.    

The second and third arguments are easier to disprove.  

 



Falsifying the AM/GM Difference as an Estimate of Volatility Drag  

The claim that the difference between AM and GM quantifies volatility drag can be tested by 

comparing its predictions with historic results of securities with well-established volatility drag 

characteristics, specifically resetting leveraged exchange traded products (ETPs 

Periodically resetting leveraged ETPs seek to deliver a percentage move that is a multiple 

(positive or negative) of an underlying security’s percentage move. For example, a daily 

resetting 2X leveraged fund will target a daily increase of 6% if its underlying index goes up 3% 

on that day. To achieve this performance, the effective investment level in the underlying must 

be rebalanced during each measurement period to maintain the leverage factor for the next 

period. One side effect of these asset shifts is a well-characterized drag on their prices due to 

volatility that is a function of the leverage factor (Crouse 2019).  

The approximate equation for computing the average per period volatility drag on the geometric 

returns for these products is: 

𝑅𝑣𝑑 = 𝐿(𝐿 − 1)
𝜎𝑢

2

2
                                                                         (2) 

Where: 

• 𝑅𝑣𝑑 = reduction in the per period geometric returns due to volatility 

• L =   leverage factor, which can be positive or negative. Negative factors are used with 

inverse funds.  

• 𝜎𝑢 = volatility of the underlying index  

One of the characteristics of this equation is that it predicts an asymmetry in volatility drag 

between positive and negative leverage levels. For example, it predicts that the average per 

period volatility drag of -1X leveraged and +2X leveraged products will both be 𝜎𝑢
2, even 

though the -1X product only has half the volatility. 

The historic volatility drag can be calculated by subtracting the actual returns of the leveraged 

funds from the appropriately leveraged historic returns of their underlying index. The equation 

used to compute the volatility drag is 𝑅𝑣𝑑 = 𝐿(𝐼𝑛𝑑𝑒𝑥𝑔𝑢
) – 𝑅𝑔𝑙 

Where: 

1. 𝑅𝑔𝑙 = geometric returns of the leveraged security 

2. 𝐼𝑛𝑑𝑒𝑥𝑔𝑢
= geometric returns of the underlying index 

Figure 3 shows the predicted average daily volatility drag levels using the AM-GM difference 

and equation (2) methods compared to the measured drag on -2X, -1X, +2X, and +3X leveraged 

S&P 500 ETPs for June 2009 through 2020, when the average daily S&P 500 index (SPX) 

volatility was 1.1 percent.  



 

Figure 3: Volatility drag predictions used simulated leveraged fund with Pn =Pn-1 *(1-fees+dividend + 

L*(SPXn/SPXn-1-1)) 

 

The predictions of equation (2) closely match the actual results shown in figure 3, whereas the 

AM-GM predictions differ dramatically from the measured volatility drag and do not exhibit the 

asymmetric aspect of volatility drag associated with positive and negative leverage. In the case 

of resetting leveraged securities at least, the AM-GM relationship does not correctly predict 

volatility drag.  

 

The AM-GM Difference Quantifies Volatility, Not Volatility Drag 

Rather than predicting volatility drag, the difference between the arithmetic return of a 

multiplicative series and its geometric mean is an estimate of the variance divided by two. 

Solving for volatility in equation (1) gives the following equation:  

𝜎 ≈  √2(𝑅𝑎
 − 𝑅𝑔  

 )
 

 

                                                                                              (3) 

Figure 4 compares the result of using this AM-GM based calculation of estimated volatility vs 

the standard deviation of log returns for the S&P 500 index and associated leveraged funds from 

2006 through 2020.   
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The AM-GM based volatility estimates shown in figure 4 closely match the results of the 

standard deviation calculation. Rather than estimating volatility drag, the AM-GM difference for 

multiplicative processes is a thinly disguised way to estimate volatility. It was just an unfortunate 

coincidence that the variance divided by two approximation that Messmore determined to be the 

difference between the AM and GM of a multiplicative series happened to match the volatility 

drag of his coin toss model of the market. 

 

Do the Unequal Percentage Moves Required For Price Recovery Cause Volatility Drag? 

As mentioned earlier, one argument used to support volatility drag is that it seems harder for 

markets to recover back to previous levels after a big downturn (Spitznagel 2018). For example, 

a 20% downturn requires a 25% increase to get back to the starting level, worse yet a 50% 

downturn requires a 100% move to recover.  

It’s certainly critical that investors avoid big losses, for example from new exciting businesses 

failing or speculative bubbles busting. If investors are not well-diversified, drawdowns from 

these high-risk bets can result in drastic losses to their portfolios. Big losses may be very difficult 

to recover from if driven by events with persistent economic impact, for example, big, 

unexpected operating losses, lawsuits, product failures, or loss of key personnel.  However, many 

significant market downswings are not driven by long-lasting real-world failures. For example, 

macro-economic cycles such as the Great Financial Crisis of 2008/2009 and the Coronavirus 

Crash of 2020 exhibited dramatic downturns, but then had rapid recoveries. During the 

Coronavirus Crash in February/March 2020, the S&P 500 dropped 30% from its January 1, 2020 
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price, but finished 2020 with an overall gain of 16%. Even 1987 ended up 2% for the year 

despite a 20+ sigma crash on October 19th.  

The linkage of the price of a security with its underlying capability/economic value is tenuous. 

Unlike a physical factor such as population or factory capacity, a price may vary dramatically 

without necessarily reflecting an actual change in capability or profitability. If a company’s 

factory burns down, its capability has been substantively reduced, however, if its market cap 

drops $100 million because the CFO just announced they are leaving the company, its value may 

recover significantly quicker—perhaps during the next news cycle. 

If it is indeed harder, as volatility drag proponents say, to recover from downswings just because 

a larger percentage move up is always required, then we should see that pattern in historic data. 

For example, the time required to recover after a 3-sigma downturn in price should be longer, on 

average, to revert to the pre-event level than the reversion time after a 3-sigma positive jump. 

Figure 5 shows S&P 500 index reversion times back to the pre-event level for the 77 positive and 

133 negative events of magnitude three sigma, or larger between 1960 and 2020. 

 

 
The historic data does not support the prediction that the time required until prices revert to their 

pre-event levels after big moves should be longer for big negative events. Sixty years of data 

indicate the opposite, the S&P 500 reverts faster after negative events than it does for positive.  

This result falsifies the assertion that volatility drag impedes price recovery after drawdowns.  

 



When Volatility Drag Look Like When it is Present?   

Before going into additional arguments regarding the existence of volatility drag in regular 

investments it may be instructive to review the characteristics of securities that do have volatility 

drag. 

Securities with intrinsic volatility drag have the following characteristics: 

1. An inevitable, ongoing drag on price 

2. The price of the security cannot be established without knowing a previous price and the 

subsequent volatility of the security 

Since volatility is ever-present in active markets, any security with volatility drag will have an 

inexorable eroding force acting on it.  Of course, there might be positive drift factors that are 

large enough to overcome the volatility drag, but in practice, the drag factors are often high 

enough that they have a significant impact on the security’s long-term performance. A 

straightforward way to observe the impact of volatility drag is to compare the performance of a 

resetting leveraged fund vs its underlying index. Figure 6 shows two instances where the S&P 

500 revisited the same level months later but the 2X leveraged version of the S&P 500 lagged. 

Portfolio values start at one thousand dollars (A/B 31-July-2017 & C/D 18-Feb-2020) and the 

portfolios each hold just the equivalent of the S&P 500 or the 2X fund.  

 

 
 



The S&P 500 returned to the starting level 145 trading days later for the A/B portfolios and 123 

days later for the C/D portfolios. The 2X fund traded at lower levels each time the S&P 500 

returned to its starting level, mostly due to volatility drag (fees were an additional factor).  

The volatility drag losses occurring in a 2X leveraged fund are only a factor of two larger than 

the losses that volatility drag proponents claim to exist on regular securities. If true, that means 

that in the period between February and August 2020 around $1.25 trillion was lost via volatility 

drag from the S&P 500’s then $25 trillion market capitalization—which seems unlikely.  

 

Pricing a Security with Volatility Drag Requires Historical Information 

The price of a market traded product or security can usually be estimated based on its current 

attributes, be it cost of production, scarcity, required profit levels, interest rates, future potential, 

net earnings, or some other basis. The precision of that price estimate depends on the nature of 

the security (for example the present value of a bond is precisely related to its interest rate and 

payout characteristics). But there’s no way to accurately price a security that has volatility drag 

without having a price starting point (e.g., the inception price of the product) and knowing the 

subsequent price history/volatility.  For example, if the price of a daily resetting 2X leveraged 

fund and its underlying were priced at $100 and $50 respectively 200 days ago and the price for 

the underlying is now $60 we can only say that the 2X’s price will be somewhere between zero 

and $144 depending on the intervening volatility. 

 

The Case for Volatility Neutral Markets  

Unlike resetting leveraged ETPs, we lack a precise objective reference to determine if regular 

securities have inherent volatility drag. Instead, we must rely on subtler arguments to determine 

if securities markets are better described as having volatility drag or being volatility neutral. The 

existence of volatility drag in regular markets is in conflict with these three observations: 

1. Markets don’t behave like they have volatility drag 

2. There are no theoretical underpinnings for volatility drag in general markets 

3. The Black & Scholes option pricing model will misprice options if volatility drag 

exists in the underlying security.  

On the first point, if volatility drag does exist in securities markets it is an aberration amongst 

markets in general.  We don’t see evidence of long-term, volatility-driven declines in markets 

like bread, gold, or bonds.  We certainly don’t assume that prices in these markets will inevitably 

be eroded due to volatility.  

Unlike compulsive gamblers, the net worth of the long-term investor, especially one holding 

broad-based equity indexes tends to climb quite nicely over time.  Finally, it seems absurd that a 



stock tied to a real-life company cannot be valued on its merits without being structurally 

dependent on past prices/volatility—which is required in a market with volatility drag, 

On the second point, there is no theoretical framework that supports the assertion that markets 

have volatility drag.  The model commonly proposed, based on “coin flip” style symmetric 

moves, does have volatility drag, but it’s a hypothesis without historical evidence or a theoretical 

foundation. A volatility neutral model on the other hand is based on the generally accepted 

Geometric Brownian Motion stochastic differential equations that have been verified as 

providing a good first approximation to market behaviors.  

Regarding the third point, the Black & Scholes (B&S) option pricing model includes as one of its 

building blocks the GBM style model for securities prices, which does not include any provision 

for volatility drag. The B&S model is far from perfect, e.g., it does not predict that options will 

tend to have different implied volatilities depending on strike and expiration, but nonetheless, it 

is widely considered a good first approximation for pricing options.  

Because the standard B&S model does not incorporate volatility drag, it will misprice options on 

securities that do have volatility drag such as resetting leveraged ETPs. Call options for both 

positively and negatively leveraged products would be overpriced by the B&S model because the 

ETP’s prices at expiration for each are eroded by volatility and the model does not account for 

that. Call options on a resetting leveraged ETP will on average, expire worthless more often than 

the equivalent option on a volatility drag-free security with the same realized volatility as the 

leveraged product. Figure 7 shows simulation results that support that hypothesis. The results in 

figure 7 also demonstrate that adding an upfront supplemental positive drift factor calculated to 

compensate for the volatility drag on a 3X fund brings the statistics back in line with a security 

without volatility drag.  

 

 
 

40% 45% 50% 55% 60%

 +3X Leveraged, Realized Daily Volatilty 3%,
Drift = Volatilty Drag/Leverage

 +3X Leveraged, Realized Daily Volatilty 3%,
Drift =0

  Unleveraged, Realized Daily Volatilty 3%,
Drift = 0

Figure 7: Simulation Results, Percent of Calls Expiring 
Worthless

(Initial Price $100, Strike $100, Interest rate =0)

Percent of Calls Expiring Worthless



The B&S model is widely used for option price analysis. It seems unlikely that systematic 

mispricing due to volatility drag in the vast majority of securities would go unnoticed. This is yet 

another reason to conclude that vocality drag is not present in regular securities.  

 

What Model is Better? 

Emanual Derman in “A Stylized History of Quantitative Finance”, states that "There are no 

reliable theorems in finance; it’s not math, it’s the world" (Derman 2018). All models are 

imperfect in terms of reflecting reality, but some are more imperfect than others. The volatility 

drag model for regular markets does not make any successful predictions and is at odds with 

solutions to GBM stochastic differential equations as well as the Black & Scholes option pricing 

model.  

On the other hand, a volatility neutral model emerges naturally from the assumption that markets 

represent an estimate of value, and that the noise of volatility does not inherently erode the value 

of a typical security. It is consistent with the theoretical underpinnings of GBM and correctly 

predicts that downward moves do not take longer than positive moves to mean revert.   

The qualitative and quantitative arguments support a volatility neutral model as a better way to 

represent securities markets, supporting the conclusion that volatility drag is a ludic fallacy—

except for resetting leveraged products.   

 

So What?  

What are the implications for investors if volatility drag doesn’t exist for stocks, bonds, and non-

leveraged Exchange-Traded Products? It means: 

• That popular, “low volatility” products do not have a structural, volatility drag based 

advantage over portfolios with higher average volatility (e.g., the S&P 500).  

• The initial use of margin to boost the leverage on a portfolio does not incur an economic 

penalty just because leverage increases the effective volatility of a portfolio 

• More volatile securities are not handicapped by an erosion factor that increases 

exponentially with volatility.  

 

On the other hand, recognizing where volatility drag doesn’t exist can make lower volatility 

securities more attractive. Currently, analysts are faced with a false dilemma, forecast prices 

using expected values known to be overly optimistic or with geometric returns said to be 

distorted by volatility drag. Rejecting volatility drag as a real-life mechanism in the general case 

will highlight the superiority of using geometric returns of securities—as opposed to the 

volatility boosted expected returns—for forecasting long-term performance. 

The absence of volatility drag in individual securities will help clarify the underlying mechanics 

of strategies that use diversification, leverage, and rebalancing to optimize returns.  



Recognizing that markets are better described as value estimators, rather than inherently lossy 

casino-style games helps us to better model and understand markets. It’s time to recognize that 

while volatility can have a major impact on prices, it’s not an inherently destructive force.  
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