Header: "Measure-preserving probability spaces for dynamical systems, or equivalently (X, μ, T) "

Section 1 (Definitions and Notation): 1. $(X, \mathcal{B}, \mu) = a$ measure space 2. $T : X \to X$ is measurable 3. T preserves μ : $\mu(T^{-1}A) = \mu(A) \quad \forall A \in \mathcal{B}$

Section 2 (Examples): - $(X, \mu) = ([0, 1], \lambda), T(x) = 2x \mod 1$ - Circle rotation $(X, \mu) = (S^1, \lambda), T(x) = x + \alpha \mod 1$

Section 3 (Ergodicity and Mixing): Ergodicity: 1. T is **ergodic** if: - $\forall A \in \mathcal{B}$, $T^{-1}A = A \implies \mu(A) \in \{0, 1\}$

Mixing: 2. T is **mixing** if: - $\lim_{n\to\infty} \mu(T^{-n}A \cap B) = \mu(A)\mu(B)$

Section 4 (Applications of Mixing): - **Pointwise Ergodic Theorem**: - $f \in L^1(X, \mu)$, $\frac{1}{N} \sum_{n=1}^N f(T^n x) \to \int_X f d\mu \quad \mu$ -almost everywhere.

Section 5 (Further Notes and Symbols): 1. $B: L^2(X,\mu) \to L^2(X,\mu)$, where $B(f) = \int_X f d\mu$. 2. T generates a group $(T^n)_{n \in \mathbb{Z}}$. 3. Ergodic systems: No nontrivial invariant subsets. 4. Mixing implies ergodicity, but not vice versa.